2021 (18), №4

The Impact of Urbanization on Atmospheric Pollution in Russian Regions



For citation: 

Mariev, O. S., Davidson, N. B. & Borzova, I. A. (2021). The Impact of Urbanization on Atmospheric Pollution in Russian Regions. Zhurnal Economicheskoj Teorii [Russian Journal of Economic Theory], 18(4), 627-641. https://doi.org/10.31063/2073-6517/2021.18-4.11


The study discusses the impact of urbanization on the pollutant emissions into the atmosphere in Russian regions in 2001–2018 based on the data from the Federal State Statistics Service. The regions are divided into two groups by export activity, to determine the impact of urbanization on air pollution taking into account regional specialization. The study also tests the hypothesis that the costs of innovation play a role in the process of urbanization. Methodologically, the study relies on econometric methods based on the panel data. The results show that a rise in the level of urbanization, calculated as a proportion of the urban population, increases the level of pollutant emissions, regardless of which group the region falls into. The increased costs of technological innovations, on the contrary, lead to a reduction in the volume of emissions, which means that it is necessary to stimulate companies to invest more in equipment modernization. The results of the research can be useful for regional policy-makers.

PDF full
Downloaded: 50

Oleg S. Mariev — Cand. Sci. (Econ.), Head of Department of Economics, Ural Federal University named after the first President of Russia B. N. Yeltsin; https://orcid.org/0000–0002–9745–8434 (19, Mira St., Ekaterinburg, 620002, Russian Federation; e-mail: o.s.mariev@urfu.ru).

Natalia B. Davidson — Cand. Sci. (Econ.), Associate Professor of International Economics and Management Department, Ural Federal University named after the first President of Russia B. N. Yeltsin; https://orcid.org/0000–0002–6779–9561 (19, Mira St., Ekaterinburg, 620002, Russian Federation; e-mail: natalya.davidson@gmail.com).

Irina A. Borzova — Student, Ural Federal University named after the first President of Russia B. N. Yeltsin; https://orcid.org/0000–0002–9653–8248 (19, Mira St., Ekaterinburg, 620002, Russian Federation; e-mail: sunny.borzova@list.ru).

Ivanova, V. I. (2019). VRP i zagryaznenie okruzhayushchey sredy v regionakh Rossii: prostranstvenno-ekonometricheskiy analiz [GRP and environmental pollution in Russian regions: spatial econometric analysis].  Kvantil’ [Quantile], 14,  53–62. Retrieved from: https://ideas.repec.org/a/qnt/quantl/y2019i14p53-62.html (Date of access: 20.06.2021). (In Russ.)

Mariev, O. S., Davidson, N. B. & Emel’yanova, O. S. (2020). Vliyanie urbanizatsii na vybrosy uglekislogo gaza v regionakh Rossii [The Impact of Urbanization on Carbon Dioxide Emissions in the Regions of Russia].  Journal of applied economic research, 19(3),  286–309. DOI: 10.15826/vestnik.2020.19.3.014. (In Russ.)

Ali, R., Bakhsh, K. & Yasin, M. A. (2019). Impact of urbanization on CO2 emissions in emerging economy: evidence from Pakistan.  Sustainable Cities and Society, 48,  101553. DOI: 10.1016/j.scs.2019.101553.

Bailey, D. & Katz, J. N. (2011). Implementing panel-corrected standard errors in R: The pcse Package.  Journal of Statistical Software, Foundation for Open Access Statistics, 42(c01).

Bakirtas, I. & Cetin, M. A. (2017). Revisiting the environmental Kuznets curve and pollution haven hypotheses: MIKTA sample.  Environmental Science and Pollution Research, 24,  18273–18283. DOI: 10.1007/s11356–017–9462-y.

Danish, Ulucak, R. & Khan, S. U.-D. (2020). Determinants of the ecological footprint: Role of renewable energy, natural resources and urbanization.  Sustainable Cities and Society, 54.  DOI: 10.1016/j.scs.2019.101996.

Dietz, T. & Rosa, E. A. (1994). Rethinking the environmental impacts of population, affluence and technology.  Human Ecology Review, 1(2),  277–300.

Doytch, N. & Uctum, M. (2016). Globalization and the environmental impact of sectoral FDI.  Economic Systems, 40(4),  582–594. DOI: 10.1016/j.ecosys.2016.02.005.

Driscoll, J. C. & Kraay, A. C. (1998). Consistent covariance matrix estimation with spatially dependent panel data.  The Review of Economics and Statistics, 80(4),  549–560. DOI: 10.1162/003465398557825.

Ehrlich, P. R. & Holdren, J. P. (1971). Impact of population growth.  Science, 171(3977),  1212–1217. DOI: 10.1126/science.171.3977.1212.

Hao, Y., Chen, H., Wei, Y.-M. & Li, Y.-M. (2016). The influence of climate change on CO2 (carbon dioxide) emissions: an empirical estimation based on Chinese provincial panel data.  Journal of Cleaner Production, 131,  667–677. DOI: 10.1016/j.jclepro.2016.04.117.

He, Z., Xu, S., Shen, W., Long R. & Chen, H. (2017). Impact of urbanization on energy related CO2 emission at different development levels: Regional difference in China based on panel estimation.  Journal of Cleaner Production, 140,  1719–1730. DOI: 10.1016/j.jclepro.2016.08.155.

Hoechle, D. (2007). Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence.  The Stata Journal, 7(3),  281–312. DOI: 10.1177/1536867X0700700301.

Johan-Andrés, V.-H., Vivanco, D. F. & Hernández-Riveros, J.-A. (2019). Technological change and the rebound effect in the STIRPAT model: A critical view.  Energy Policy, 129,  1372–1381. DOI: 10.1016/j.enpol.2019.03.044.

Khan, K., Su, C. W., Tao, R. et al. (2020). Urbanization and carbon emission: Causality evidence from the new industrialized economies.  Environment, Development and Sustainability, 22(8),  7193–7213. DOI: 10.1007/s10668–019–00479–1.

Kuznets, S. (1955). Economic growth and income inequality.  The American Economic Review, 45(1),  1–28. Retrieved from: https://www.jstor.org/stable/1811581. (Date of access:18.05.2021).

Lin, B. & Xu, B. (2018). Growth of industrial CO2 emissions in Shanghai city: Evidence from a dynamic vector autoregression analysis.  Energy, 151,  167–177. DOI: 10.1016/j.energy.2018.03.052.

Lin, S., Wang, S., Marinova, D., Zhao, D. & Hong, J. (2017). Impacts of urbanization and real economic development on CO2 emissions in non-high income countries: Empirical research based on the extended STIRPAT model.  Journal of Cleaner Production, 166(10),  952–966. DOI: 10.1016/j.jclepro.2017.08.107.

Ni, W. & Li, Y. (2011). Dynamic relations between foreign trade, FDI and CO2 emission: an empirical analysis of Zhejiang Province.  Journal of Zhejiang Shuren University.  DOI: 10.3969/j.issn.1671–2714.2011.04.009.

Petroviс, P. & Lobanov, M. M. (2020). The impact of R&D expenditures on CO2 emissions: Evidence from sixteen OECD countries.  Journal of Cleaner Production, 248 (2).  DOI: 10.1016/j.jclepro.2019.119187.

Poumanyvong, P. & Kaneko, S. (2010). Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis.  Ecological Economics, 70(2),  434–444. DOI: 10.1016/j.ecolecon.2010.09.029.

Qin, B. & Wu, J. (2015). Does urban concentration mitigate CO2 emissions? Evidence from China 1998–2008.  China Economic Review, 35(C),  220–231. DOI: 10.1016/j.chieco.2014.02.006.

Rehman, A., Ma, H., Ahmad, M., Irfan, M., Traore, O. & Chandio, A. A. (2021). Towards environmental sustainability: Devolving the influence of carbon dioxide emission to population growth, climate change, forestry, livestock and crops production in Pakistan.  Ecological Indicators, 125,  1–11. DOI: 10.1016/j.ecolind.2021.107460.

Rogers, E. M. & Chaffee, S. H. (1993). The past and the future of communication study: convergence or divergence?  Journal of Communication, 43(4),  125–131. DOI: 10.1111/j.1460–2466.1993.tb01312.

Sadorsky, P. (2014). The effect of urbanization on CO2 emissions in emerging economies.  Energy Economics, 41(C),  147–153. DOI: 10.1016/j.eneco.2013.11.007.

Sharma, S. S. (2011). Determinants of carbon dioxide emissions: Empirical evidence from 69 countries.  Applied Energy, 88(1),  376–382. DOI: 10.1016/j.apenergy.2010.07.022.

Shuddhasattwa, R., Salim, R. & Apergis, N. (2016). Agriculture, trade openness and emissions: an empirical analysis and policy options.  Australian journal of Agricultural and Resource Economics, 60(3),  348–365. DOI: 10.1111/1467–8489.12131.

Stern, D. I. (2004). The Rise and Fall of the Environmental Kuznets Curve.  World Development, 32(8),  1419–1439. DOI: 10.1016/j.worlddev.2004.03.004.

Wang, P., Wu, W., Zhu, B. & Wei, Y. (2013). Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China.  Applied Energy, 106(C),  65–71. DOI: 10.1016/j.apenergy.2013.01.036.

Wang, S., Zhao, T., Zheng, H. & Hu, J. (2017). The STIRPAT Analysis on Carbon Emission in Chinese Cities: An Asymmetric Laplace Distribution Mixture Model.  Sustainability, 9(12),  1–13. DOI: 10.3390/su9122237.

Xu, Sh.-Ch., He, Zh.-X., Long, R.-Y., Shen, W.-X. et al. (2015). Impacts of economic growth and urbanization on CO2 emissions: regional differences in China based on panel estimation.  Regional Environmental Change, 16,  777–787. DOI: https://doi.org/10.1007/s10113-015-0795-0.

Yang, L., Xia, H., Zhang, X. & Yuan, S. (2018). What matters for carbon emissions in regional sectors? A China study of extended STIRPAT model.  Journal of Cleaner Production, 180,  595–602. DOI: 10.1016/j.jclepro.2018.01.116.

Yonghong, L., Gao, C. & Lu, Y. (2017). The impact of urbanization on GHG emissions in China: The role of population density.  Journal of Cleaner Production, 157,  299–309. DOI: 10.1016/j.jclepro.2017.04.138.

Zhang C. & Zhou X. (2016). Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China.  Renewable and Sustainable Energy Reviews, 58(C),  943–951. DOI: 10.1016/j.rser.2015.12.226.

Zhang, S. & Zhao, T. (2019). Identifying major influencing factors of CO2 emissions in China: Regional disparities analysis based on STIRPAT model from 1996 to 2015.  Atmospheric Environment, 207,  136–147. DOI: 10.1016/j.atmosenv.2018.12.040

Zhu, H.-M., You, W.-H. & Zeng, Z.-fa. (2012). Urbanization and CO2 emissions: A semi-parametric panel data analysis.  Economics Letters, 117(3),  848–850. DOI: 10.1016/j.econlet.2012.09.001.