2023 (20), №1

Chaos Theory: Expanding the Boundaries of Economic Research

For citation: 

Lavrikova, Yu. G., Buchinskaia, O. N. & Myslyakova, Yu. G. (2023). Chaos Theory: Expanding the Boundaries of Economic Research. AlterEconomics, 20(1), 79–109. https://doi.org/10.31063/AlterEconomics/2023.20-1.5

Abstract:

The application of chaos theory in economics is associated with an increasing level of uncertainty and external shocks faced by economic systems. This article reviews and systematizes the approaches to the use of chaos theory in economic research. To this end, we discuss the concept of chaos and its relevance; and identify those areas of research for which the application of chaos theory holds most promise. The research methodo­logy comprises methods of system-functional and system-historical analysis. These methods are used to analyze the content of publications devoted to the application of chaos theory to study price fluctuations in individual markets, the behaviour of firms in the conditions of imperfect competition, the analysis of uncertainty of consumer behaviour, as well as cyclical economic development and disequilibrium associated with the ba­lance of unemployment and inflation and geopolitical tensions. The study draws the distinction between the concepts of synergetics and chaos theory. It is shown that although these two research areas are related, they have a different focus of application. The study also identifies some common patterns in the use of chaos theory tools for economic research: at the first stage, elements of chaos, fractals and nonlinearity in the series of economic data are identified; at the second stage, researchers try to explain certain events by using the tools of chaos theory; and at the third stage, chaos theory is used to model and subsequently predict short-term and long-term trends. Chaos theory expands the mathematical apparatus of economic research, allowing researchers to access tools from the field of physics and other natural sciences, which enhances interdisciplinary synthesis.

PDF full
Downloaded: 76

Yulia G. Lavrikova — Dr. Sci. (Econ.), Associate Professor, Director, Institute of Economics of the Ural Branch of the Russian Academy of Sciences; https://orcid.org/0000-0002-6419-2561 (29, Moskovskaya St., Ekaterinburg, 620014, Russian Federation; e-mail: lavrikova.ug@uiec.ru).

Olga N. Buchinskaia — Cand. Sci. (Econ.), Senior Research Associate of the Sector of Territorial Competition, Center for Economic Theory, Institute of Economics of the Ural Branch of the Russian Academy of Sciences; https://orcid.org/0000-0002-5421-2522 (29, Moskovskaya St., Ekaterinburg, 620014, Russian Federation; e-mail: buchinskaia.on@uiec.ru).

Yuliya G. Myslyakova — Cand. Sci. (Econ.), Head of the Laboratory of Economic Genetics of the Regions, Institute of Economics of the Ural Branch of the Russian Academy of Sciences; https://orcid.org/0000-0001-7635-3601 (29, Moskovskaya St., Ekaterinburg, 620014, Russian Federation; e-mail: mysliakova.ug@uiec.ru).

Açikalin, Ş. N. & Erçetin, Ş. Ş. (2022). Understanding COVID-19 with Chaos Theory: Dynamics and Implications for Societies. Beyond Covid-19: Multidisciplinary Approaches and Outcomes on Diverse Fields,  1–18. https://doi.org/10.1142/9781800611450_0001

Agiza, H. N. & Elsadany, A. A. (2004). Chaotic dynamics in nonlinear duopoly game with heterogeneous players. Applied Mathematics and Computation, 149 (3), 843–860. https://doi.org/10.1016/S0096-3003(03)00190-5

Ahmed, E., Elsadany, A. A. & Puu, T. (2015). On Bertrand duopoly game with differentiated goods. Applied Mathematics and Computation, 251, 169–179. https://doi.org/10.1016/j.amc.2014.11.051

Akaev, A. A. & Rudskoi, A. I. (2015). Ob odnoy matematicheskoy modeli dlya prognoznykh raschetov sinergeticheskogo effekta NBIC-tekhnologiy i otsenki ego vliyaniya na ekonomicheskiy rost v pervoy polovine XXI veka [A Mathematical Model for Predictive Computations of the Synergy Effect of NBIC Technologies and the Evaluation of Its Influence on the Economic Growth in the First Half of the 21st Century]. Doklady Akademii nauk [Reports of the Academy of Sciences], 461 (4), 383–383. https://doi.org/10.7868/S0869565215100047 (In Russ.)

Arnol’d, V. I. (1963). Malye znamenateli i problemy ustoychivosti dvizheniya v klassicheskoy i nebesnoy mekhanike [Small denominators and problems of stability of motion in classical and celestial mechanics.]. Uspekhi matematicheskikh nauk [Successes of mathematical sciences], 18 (6), 91–192. (In Russ.)

Arnol’d, V. I. (2006). Nedootsenennyy Puankare [An underrated Poincare]. Uspekhi matematicheskikh nauk [Successes of Mathematical Sciences], 61 (1), 3–24. https://doi.org/10.4213/rm1714 (In Russ.)

Arnol’d, V. I., Kozlov, V. V. & Neishtadt, A. I. (1985). Matematicheskie aspekty klassicheskoy i nebesnoy mekhaniki [Mathematical aspects of classical and celestial mechanics]. Itogi nauki i tekhniki. Seriya «Sovremennye problemy matematiki. Fundamental’nye napravleniya» [Results of science and technology. The series “Modern problems of mathematics. Fundamental Directions”], 3, 5–290. (In Russ.)

Askar, S. S. (2013). On complex dynamics of monopoly market.  Economic Modelling, 31,  586–589. https://doi.org/10.1016/j.econmod.2012.12.025

Askar, S. S. (2022). On the Dynamics of Cournot Duopoly Game with Governmental Taxes.  Complexity, 2022.  https://doi.org/10.1155/2022/5195337

Bahrami, H., Abdechiri, M. & Meybodi, M. R. (2012). Imperialist competitive algorithm with adaptive colonies movement. International Journal of Intelligent Systems and Applications, 4 (2), 49–57. https://doi.org/10.5815/ijisa.2012.02.06

Bak, P. & Chen, K. (1991). Self-organized criticality. Scientific American, 264 (1), 46–53.

Bak, P., Tang, C. & Wiesenfeld, K. (1988). Self-organized criticality. Physical review A, 38 (1), 364. https://doi.org/10.1103/PhysRevA.38.364

Barnett, W. A., Bella, G., Ghosh, T., Mattana, P. & Venturi, B. (2022). Shilnikovchaos, low interest rates, and New Keynesian macroeconomics. Journal of Economic Dynamics and Control, 134 (C). https://doi.org/10.1016/j.jedc.2021.104291

Baumol, W. J. & Benhabib, J. (1989). Chaos: significance, mechanism, and economic applications. Journal of economic perspectives, 3 (1), 77–105. https://doi.org/10.1257/jep.3.1.77

Benhabib, J. & Day, R. H. (1981). Rational choice and erratic behavior. The Review of Economic Studies, 48 (3), 459–471. https://doi.org/10.2307/2297158

Bildirici, M. E. & Sonustun, F. O. (2019). Chaotic characteristic of inflation-unemployment relation in Turkey. AIP Conference Proceedings, 2178 (1). https://doi.org/10.1063/1.5135468

Boldrin, M. & Montrucchio, L. (1985). The emergence of dynamic complexities in models of optimal growth: The role of impatience.  Rochester Center for Economic Research, Working Paper, 7,  1–50.

Bufalo, M., Liseo, B. & Orlando, G. (2022). Forecasting portfolio returns with skew-geometric Brownian motions. Applied Stochastic Models in Business and Industry, 38 (4), 620–650. https://doi.org/10.1002/asmb.2678

Butler, A. (1990). A methodological approach to chaos: Are economists missing the point? Econo­mic Research Federal Reserve Bank of St. Louis Review, 72 (2), 36–48. https://doi.org/10.20955/r.72.36-48.

Chen, J., Yang, S., Zhang, D. & Nanehkaran, Y. A. (2021). A turning point prediction method of stock price based on RVFL-GMDH and chaotic time series analysis. Knowledge and information systems, 63 (10), 2693–2718. https://doi.org/10.1007/s10115-021-01602-3

Chen, L. & Chen, G. (2007). Controlling chaos in an economic model. Physica A: Statistical Mechanics and its Applications, 374 (1), 349–358. https://doi.org/10.1016/j.physa.2006.07.022

Chen, P. (1996). A Random walk or color chaos on the stock market? Time-frequency analysis of S&P indexes. Studies in Nonlinear Dynamics & Econometrics, 1 (2), 87–103. https://doi.org/10.2202/1558-3708.1014

Chen, P. (2008). Equilibrium illusion, economic complexity and evolutionary foundation in economic analysis. Evolutionary and Institutional Economics Review, 5 (1), 81–127. https://doi.org/10.14441/eier.5.81

Chiarella, C. (1990). The Cobweb Model; Its Instability and the Onset of Chaos. The Elements of a Nonlinear Theory of Economic Dynamics. Berlin, Heidelberg: Springer, 86–99. https://doi.org/10.1007/978-3-642-46707-3_6

Chiarella, C., Dieci, R. & Gardini, L. (2002). Speculative behaviour and complex asset price dynamics: a global analysis. Journal of Economic Behavior & Organization, 49 (2), 173–197. https://doi.org/10.1016/S0167-2681(02)00066-5

Day, R. H. & Lin, T. Y. (1991). A Keynesian business cycle. Nicholas Kaldor and mainstream economics. London: Palgrave Macmillan, 281–305. https://doi.org/10.1007/978-1-349-10947-0_16

Day, R. H. & Pavlov, O. V. (2004). Computing economic chaos. Computational Economics, 23 (4), 289–301. https://doi.org/10.1023/B:CSEM.0000026787.81469.1f

Day, R. H. (1983). The emergence of chaos from classical economic growth. The Quarterly Journal of Economics, 98 (2), 201–213. https://doi.org/10.2307/1885621

DeCoster, G. P., Labys, W. C. & Mitchell, D. W. (1992). Evidence of chaos in commodity futures prices. The Journal of Futures Markets, 12 (3), 291–305. https://doi.org/10.1002/fut.3990120305

Deryabina, M. A. (2018). Samoorganizatsiya: teoreticheskie i metodologicheskie osnovaniya v optike sinergeticheskoy paradigmy [Self-organization: theoretical and methodological foundations in the optics of the synergetic paradigm].  Obshhestvennye nauki i sovremennost’ [Social Sciences and Contemporary World], 6,  149–161. https://doi.org/10.31857/S086904990002757-4 (In Russ.)

Dieci, R., Mignot, S. & Westerhoff, F. (2022). Production delays, technology choice and cyclical cobweb dynamics.  Chaos, Solitons & Fractals, 156.  https://doi.org/10.1016/j.chaos.2022.111796

Ekaterinchuk, E., Jungeilges, J., Ryazanova, T. & Sushko, I. (2018). Dynamics of a minimal consumer network with bi-directional influence.  Communications in Nonlinear Science and Numerical Simulation, 58,  107–118. https://doi.org/10.1016/j.cnsns.2017.04.007

Evstigneeva, L. P. & Evstigneev, R. N. (2010b).  Ekonomika kak sinergeticheskaya sistema [Economy as a synergetic system].  Moscow, Russia: LENAND, 272. (In Russ.)

Evstigneeva, L. P. & Evstigneev, R. N. (2010а). Ekonomicheskaya integratsiya kak sinergeticheskiy fenomen [Economic integration as a synergetic phenomenon]. Mir peremen [The World of Transformations], 4,  99–114. (In Russ.)

Evstigneeva, L. P. & Evstigneev, R. N. (2012). Stanovlenie ekonomicheskoy sinergetiki [Formation of economic synergy].  Obshhestvennye nauki i sovremennost’ [Social Sciences and Contemporary World], 1,  122–133. (In Russ.)

Faggini, M. & Parziale, A. (2012). The failure of economic theory. Lessons from chaos theory. Modern Economy, 3 (1). https://doi.org/10.4236/me.2012.31001

Fan, X., Wang, L. & Li, S. (2016). Predicting chaotic coal prices using a multi-layer perceptron network model.  Resources Policy, 50,  86–92. https://doi.org/10.1016/j.resourpol.2016.08.009

Fanti, L. & Manfredi, P. (2007). Neoclassical labour market dynamics, chaos and the real wage Phillips curve. Journal of Economic Behavior & Organization, 62 (3), 470–483. DOI: https://doi.org/10.1016/j.jebo.2005.01.007.

Fatás-Villafranca, F., Saura, D. & Vazquez, F. J. (2009). Diversity, persistence and chaos in consumption patterns. Journal of bioeconomics, 11 (1), 43–63. https://doi.org/10.1007/s10818-009-9059-8

Fernández-Herrería, A. & Martínez-Rodríguez, F. M. (2019). The earth charter as a new worldview in a post-neoliberal world: chaos theory and morphic fields as explanatory contexts. World Futures, 75 (8), 591–608. https://doi.org/10.1080/02604027.2019.1634417

Ferri, P., Greenberg, E. & Day, R. H. (2001). The Phillips curve, regime switching, and the NAIRU. Journal of Economic Behavior & Organization, 46 (1), 23–37. https://doi.org/10.1016/s0167-2681(01)00185-8

Gaertner, W. & Jungeilges, J. (1988). A non-linear model of interdependent consumer behaviour. Economics Letters, 27 (2), 145–150. https://doi.org/10.1016/0165-1765(88)90087-0

Gallas, J. A. C. & Nusse, H. E. (1996). Periodicity versus chaos in the dynamics of cobweb models. Journal of Economic Behavior & Organization, 29 (3), 447–464. https://doi.org/10.1016/0167-2681(95)00082-8

Guo, F., Liu, C. & Shi, Q. (2019). Smart or stupid depends on who is your counterpart: a cobweb model with heterogeneous expectations. Studies in Nonlinear Dynamics & Econometrics, 23 (5), 20170082. https://doi.org/10.1515/snde-2017-0082

Haken, H. (1977). Synergetics. Physics Bulletin, 28 (9), 412–414.

Haken, H. (1978).  Synergetics: An Introduction Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology.  New York, the USA: Springer, 376.

Hallegatte, S., Ghil, M., Dumas, P. & Hourcade, J. C. (2008). Business cycles, bifurcations and chaos in a neo-classical model with investment dynamics. Journal of Economic Behavior & Organization, 67 (1), 57–77. https://doi.org/10.1016/j.jebo.2007.05.001

Hanias, M., Tsakonas, S., Magafas, L., Thalassinos, E. I. & Zachilas, L. (2020). Deterministic chaos and forecasting in Amazon’s share prices. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15 (2), 253–273. https://doi.org/10.24136/eq.2020.012

Ishiyama, K. & Saiki, Y. (2005). Unstable periodic orbits embedded in a chaotic economic dynamics model. Applied Economics Letters, 12 (12), 749–753. https://doi.org/10.1080/13504850500120318

Ivanchenko, I. S., Boeva, K. Y., Temirkanova, A. V. & Jiang, H. (2021). Controlled Chaos as a Tool of Modern Globalization.  Strategies and Trends in Organizational and Project Management. DITEM 2021. Lecture Notes in Networks and Systems,  214–218. https://doi.org/10.1007/978-3-030-94245-8_29

Jakimowicz, A. (2010). Catastrophes and Chaos in Business Cycle Theory. ActaPhysica Polonica, A, 117 (4), 640–646.

Jungeilges, J., Pavletsov, M. & Perevalova, T. (2022). Noise-induced behavioral change driven by transient chaos.  Chaos, Solitons & Fractals, 158,  112069. https://doi.org/10.1016/j.chaos.2022.112069

Kakhovska, O., Popova, D., Skyba, E. & Tyshchenkova, I. (2020). Demythologization of the “controlled chaos” as a tool for geopolitical war: economic and sociocultural markers. Economic Annals-XXI, 184 (7–8), 94–106. https://doi.org/10.21003/ea.V184-09

Kelsey, D. (1988). The economics of chaos or the chaos of economics. Oxford economic papers, 40 (1), 1–31. https://doi.org/10.1093/oxfordjournals.oep.a041839.

Kirdina-Chandler, S. G. (2017). Evolyutsiya sotsial’no-ekonomicheskikh sistem na mezourovne: predely mnogoobraziya [The evolution of socio-economic systems at the meso-level: the limits of diversity.].  Ocherki po ekonomicheskoy sinergetike [Essays on Economic Synergetics].  Moscow, Russia: Institute of Economics, Russian Academy of Sciences, 47–68.(In Russ.)

Kirilyuk, I. L. (2020). Matematicheskiy apparat dlya issledovaniya ierarkhicheskikh sistem v ekonomike [Mathematical apparatus for the study of hierarchical systems in economics].  Evolyutsiya ierarkhicheskikh struktur v ekonomike i ekonomicheskiy rost [Evolution of Hierarchical Economic Structures and Economic Growth], 116–126. (In Russ.)

Kolmogorov, A. N. (1954). O sokhranenii uslovno-periodicheskikh dvizheniy pri malom izmenenii funktsii Gamil’tona [On the invariance of quasi-periodic motions under small perturbations of the Hamiltonian]. Doklady akademii nauk SSSR [Reports of the Academy of Sciences USSR], 98 (4), 527. (In Russ.)

Korybko, A. & Haddad, H. (2016). Chaos theory, global systemic change, and Hybrid Wars. Comparative Politics Russia, 7 (4(25)), 25–35. https://doi.org/10.18611/2221-3279-2016-7-4(25)-25-35

Kuruc, A. (2003). The relevance of Chaos Theory to operations.  Australian Defence Force Journal, 162,  4–18.

Kuznetsov, B. L. (2004). Ekonomicheskaya sinergetika kak metodologiya ekonomicheskogo razvitiya [Economic synergetics as a methodology of economic development].  Ekonomicheskoe vozrozhdenie Rossii [The Economic Revival of Russia], 2,  34–36. (In Russ.)

Lahmiri, S. & Bekiros, S. (2019). Cryptocurrency forecasting with deep learning chaotic neural networks.  Chaos, Solitons & Fractals, 118,  35–40. https://doi.org/10.1016/j.chaos.2018.11.014

Li, Y. & Wang, L. (2019). Chaos in a duopoly model of technological innovation with bounded rationality based on constant conjectural variation.  Chaos, Solitons & Fractals, 120,  116–126. https://doi.org/10.1016/j.chaos.2018.11.038

Liubarskaya, M. A., Chekalin, V. S. & Kim, O. L. (2021). Issledovanie energoperekhoda 4.0 s pozitsii ekonomicheskoy sinergetiki [Research of energy transition 4.0 from the position of economic synergy]. Ekonomicheskiy vektor [Economic vector], 4 (27), 144–148. https://doi.org/10.36807/2411-7269-2021-4-27-144-148 (In Russ.)

Lux, T. (1998). The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions. Journal of Economic Behavior & Organization, 33 (2), 143–165. https://doi.org/10.1016/S0167-2681(97)00088-7

Mandelbrot, B. (1960). The Pareto-Levy law and the distribution of income. International economic review, 1 (2), 79–106. https://doi.org/10.2307/2525289

Mandelbrot, B. (1961). Stable Paretian random functions and the multiplicative variation of income.  Econometrica, 29 (4), 517–543. https://doi.org/10.2307/1911802

Mandelbrot, B. (1962). Paretian distributions and income maximization. The Quarterly Journal of Economics, 76 (1), 57–85. https://doi.org/10.2307/1891131.

Mandelbrot, B. (1963). New methods in statistical economics. The Journal of political economy, 71 (5), 421–440. https://doi.org/10.1086/258792.

Mandelbrot, B. (2002).  Fraktal’naya geometriya prirody [The Fractal Geometry of Nature].  Moscow, Izhevsk, Russia: Institute for Computer Science Publ., 656. (In Russ.)

Mandelbrot, B. B. (1971). When can price be arbitraged efficiently? A limit to the validity of the random walk and martingale models. The Review of Economics and Statistics, 53 (3), 225–236. https://doi.org/10.2307/1937966

Mann, S. R. (1992). Chaos Theory and Strategic Thought. Parameters, 22 (3), 54–68.

Matsumoto, A. & Nonaka, Y. (2006). Statistical dynamics in a chaotic Cournot model with complementary goods. Journal of Economic Behavior & Organization, 61 (4), 769–783. https://doi.org/10.1016/j.jebo.2004.07.008

Matsumoto, A. & Szidarovszky, F. (2022). The chaotic monopolist revisited with bounded rationality and delay dynamics.  Chaos, Solitons & Fractals, 159,  112142. https://doi.org/10.1016/j.chaos.2022.112142

McCullen, N. J., Ivanchenko, M. V., Shalfeev, V. D. & Gale, W. F. (2011). A dynamical model of decision-making behavior in a network of consumers with applications to energy choices. International Journal of Bifurcation and Chaos, 21 (09), 2467–2480. https://doi.org/10.1142/S0218127411030076

Mendes, D. A. & Mendes, V. (2005). Control of chaotic dynamics in an OLG economic model.  Journal of Physics: Conference Series, 23,  158–181. https://doi.org/10.1088/1742-6596/23/1/019

Molchanov, A. V. & Smirnov, F. A. (2012). Nastuplenie ery finansovogo khaosa kak krizis tsivilizatsii Zapada [Beginning of Financial Turmoil Age as a Crisis for the Western Civilization]. Novyy universitet. Seriya «Ekonomika i pravo» [New university. The series “Economics and Law”], 3 (13), 4–13. (In Russ.)

Möser, J. (1962). On invariant curves of area-preserving mappings of an annulus.  Nachr. Akad. Wiss. Göttingen, II,  1–20.

Moshiri, S. & Foroutan, F. (2006). Forecasting nonlinear crude oil futures prices. The energy journal, 27 (4), 81–96. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol27-No4-4

Moşteanu, N. R. (2019). Intelligent tool to prevent Economic Crisis–Fractals. A possible solution to assess the Management of Financial Risk. Calitatea, 20 (172), 13–17.

Mukhin, R. R. (2014). Dinamicheskiy khaos: trudnyy put’ otkrytiya [Dynamical chaos: the difficult path of discovering]. Izvestiya vuzov. Prikladnaya nelineynaya dinamika [Izvestiya VUZ. Applied nonlinear dynamics], 22 (4), 43–54. (In Russ.)

Naimzada, A. K. & Ricchiuti, G. (2008). Complex dynamics in a monopoly with a rule of thumb. Applied Mathematics and Computation, 203 (2), 921–925. https://doi.org/10.1016/j.amc.2008.04.020

Nie, P., Abd-Rabo, M. A., Sun, Y. & Ren, J. (2019). A consumption behavior model with advertising and word-of-mouth effect.  Journal of Nonlinear Modeling and Analysis, 1,  461–489. http://dx.doi.org/10.12150/jnma.2019.461

Nishimura, K. & Sorger, G. (1996). Optimal cycles and chaos: A survey. Studies in Nonlinear Dynamics & Econometrics, 1 (1), 11–28. https://doi.org/10.2202/1558-3708.1009

Onozaki, T. (2018). One-dimensional nonlinear cobweb model.  Nonlinearity, Bounded Rationality, and Heterogeneity,  25–77. https://doi.org/10.1007/978-4-431-54971-0_8

Onozaki, T., Esashi, K., Saiki, Y. & Sato, Y. (2015). Chaotic Itinerancy in Regional Business Cycle Synchronization. 立正大学経済学会ディスカッション・ペーパー [Rissho University Economic Society Discussion Paper], 1,  1–17.

Poincaré, H. (1892).  Les méthodesnouvelles de la mécaniqueceleste. Tome I. Solutions périodiques. Non-existence des intégralesuniformes. Solutions asymptotiques. Paris: Gauthier-Villars et fils, imprimeurs-libraires, 385. (In French)

Poincaré, H. (1893). Les méthodesnouvelles de la mécaniqueceleste. Tome II. Méthodes de MM. Newcomb, Gyldén, Lindstedt et Bohlin.  Paris: Gauthier-Villars et fils, imprimeurs-libraires, 479. (In French)

Poincaré, H. (1899).  Les méthodesnouvelles de la mécaniquecéleste. Tome III. Invariants intégraux. Solutions périodiques du deuxième genre. Solutions doublementasymptotiques.  Paris: Gauthier-Villars et fils, imprimeurs-libraires, 414. (In French)

Prigogine, I. & Stengers, I. (1984). Order out of Chaos: man’s new dialogue with nature.  Toronto; New York, N.Y.: Bantam Books, 349.

Prigogine, I. & Stengers, I. (1997). The end of certainty: time, chaos, and the new laws of nature.  New York: Free Press, 228.

Puu, T. (1991). Chaos in duopoly pricing. Chaos, Solitons & Fractals, 1 (6), 573–581. https://doi.org/10.1016/0960-0779(91)90045-B

Puu, T. (1995). The chaotic monopolist. Chaos, Solitons & Fractals, 5 (1), 35–44. https://doi.org/10.1016/0960-0779(94)00206-6

Pyragas, K. (1992). Continuous control of chaos by self-controlling feedback. Physics letters A, 170 (6), 421–428. https://doi.org/10.1016/0375-9601(92)90745-8

Richards, D. (1990). Is strategic decision making chaotic? Behavioral Science, 35 (3), 219–232. https://doi.org/10.1002/bs.3830350305

Sarveswararao, V. & Ravi, V. (2020). Chaos, Machine Learning and Deep Learning based Hybrid to forecast Consumer Price Index Inflation in India. 2020 IEEE Symposium Series on Computational Intelligence (SSCI),  2551–2557. https://doi.org/10.1109/ssci47803.2020.9308309

Simionescu, M. & Śmiechowski, M. (2016). Forecasting economic growth using chaos theory. Czech Journal of Social Sciences, Business and Economics, 5 (3), 37–42.

Slavyanov, A. S. (2015). Problemy protivodeystviya tekhnologiyam upravlyaemogo khaosa v razvivayushchikhsya ekonomicheskikh sistemakh [Issues of Counteracting the Controlled Chaos Technologies in Emerging Economies]. Nacional’nye interesy: prioritety i bezopasnost’ [National interests: priorities and security], 22 (307), 2–12. (In Russ.)

Smith, A. (2002). Three scenarios for applying chaos theory in consumer research. Journal of Marketing Management, 18 (5–6), 517–531. https://doi.org/10.1362/0267257022683640

Sonnemans, J., Hommes, C., Tuinstra, J. & van de Velden, H. (2004). The instability of a heterogeneous cobweb economy: a strategy experiment on expectation formation. Journal of Economic Behavior & Organization, 54 (4), 453–481. https://doi.org/10.1016/j.jebo.2003.02.004

Spelta, A., Pecora, N. & Pagnottoni, P. (2022). Chaos based portfolio selection: A nonlinear dynamics approach. Expert Systems with Applications, 188, 116055. https://doi.org/10.1016/j.eswa.2021.116055

Stepin, V. S. (2013). Tipy nauchnoy ratsional’nosti i sinergeticheskaya paradigma [Types of scientific rationality and synergetic paradigm]. Slozhnost’. Razum. Postneklassika [Complexity. Mind. Postnonclassics], 4,  45–59. (In Russ.)

Sterman, J. D. (1989). Deterministic chaos in an experimental economic system. Journal of Economic Behavior & Organization, 12 (1), 1–28. https://doi.org/10.1016/0167-2681(89)90074-7

Stoop, R. (2021). Stable periodic economic cycles from controlling.  Nonlinearities in Economics. Dynamic Modeling and Econometrics in Economics and Finance, 29,  209–244. https://doi.org/10.1007/978-3-030-70982-2_15

Suleymanova, L. (2017). The influence of the “Controlled Chaos” technology on the geopolitical situation in the Greater Middle East. The Open Journal of Political Science, 7 (2), 189–196. https://doi.org/10.4236/ojps.2017.72015

Tian, Y., Ma, J., Xie, L., Koivumäki, T. & Seppänen, V. (2020). Coordination and control of multi-channel supply chain driven by consumers’ channel preference and sales effort. Chaos, Solitons & Fractals, 132.  https://doi.org/10.1016/j.chaos.2019.109576

Verkhozin, A. N. (2012). Anri Puankare (k 100-letiyu so dnya smerti) [Henri Poincare (100 years since his death)]. Vestnik Pskovskogo gosudarstvennogo universiteta. Seriya: Estestvennye i fiziko-matematicheskie nauki [Bulletin of Pskov State University. Series: Natural and Physical-Mathematical Sciences], 1, 197–202. (In Russ.)

Veseth, M. (1998).  Selling globalization: the myth of the global economy. Boulder, the USA: Lynne Rienner Publishers, 215.

Wang, F., Wu, C. H., Tsai, S. B. & Jiang, Y. Z. (2020). An Empirical Study of a Mathematical Model for Influence of Government Tax on the Price Behavior and the Stability of Market Price.  Mathematical Problems in Engineering, 2020,  1–9. https://doi.org/10.1155/2020/8097402

Wu, W., Chen, Z. & Ip, W. H. (2010). Complex nonlinear dynamics and controlling chaos in a Cournot duopoly economic model. Nonlinear Analysis: Real World Applications, 11 (5), 4363–4377. https://doi.org/10.1016/j.nonrwa.2010.05.022

Xu, L. & Serletis, A. (2019). Communication frictions, sentiments, and nonlinear business cycles. International Journal of Economic Theory, 15 (2),137–152. https://doi.org/10.1111/ijet.12163

Yoshida, H. & Asada, T. (2007). Dynamic analysis of policy lag in a Keynes–Goodwin model: stability, instability, cycles and chaos. Journal of Economic Behavior & Organization, 62 (3), 441–469. https://doi.org/10.1016/j.jebo.2004.10.014

Zhang, J., Da, Q. & Wang, Y. (2009). The dynamics of Bertrand model with bounded rationality. Chaos, Solitons & Fractals, 39 (5), 2048–2055. https://doi.org/10.1016/j.chaos.2007.06.056

Zhang, Q. & Mu, Y. (2022). Economic Forecasting Model Based on Chaos Simulated Annealing Neural Network.  Mathematical Problems in Engineering, 2022. https://doi.org/10.1155/2022/9005833

Zhang, W.-B. (2006). Discrete dynamical systems, bifurcations and chaos in economics. Oxford: Elsevier, 460.

Zhang, W.-B. (2021). Mao Zedong and the Preconditions for the Butterfly Effect.  The Butterfly Effect in China’s Economic Growth. Singapore: Palgrave Macmillan, 1–27. https://doi.org/10.1007/978-981-15-9889-0_1

Zhou, W. & Chu, T. (2019). Complex Dynamical Behavior of a Bounded Rational Duopoly Game with Consumer Surplus.  Research Advances in Chaos Theory. https://doi.org/10.5772/intechopen.87200

Zhou, W. & Wang, X. X. (2019). On the stability and multistability in a duopoly game with R&D spillover and price competition.  Discrete Dynamics in Nature and Society, 2019,  1–21. https://doi.org/10.1155/2019/2369898